Ejercicios sección 5.7

Ejercicios 1 al 10. Demuestre las identidades trigonométricas propuestas.

  1. sen2  θ(1+cot2  θ)1sen^2\;{⁡\theta}\left(1+cot^2\;{\theta}\right)\equiv 1\\[0.2cm]
  2. tan  θ+cot  θsec  θcsc  θtan\;{⁡\theta}+cot\;{⁡\theta}\equiv sec\;{⁡\theta}\cdot csc\;{⁡\theta}\\[0.2cm]
  3. tan  θ+cos  θ1+sen  θsec  θtan\;{⁡\theta}+\cfrac{cos\;{⁡\theta}}{1+sen\;{⁡\theta}}\equiv sec\;{⁡\theta}\\[0.2cm]
  4. 1+sen  α1sen  α1sen  α1+sen  α4tan  αsec  α\cfrac{1+sen\;{⁡\alpha}}{1-sen\;{⁡\alpha}}-\cfrac{1-sen\;{⁡\alpha}}{1+sen\;{⁡\alpha}}\equiv 4\cdot tan\;{⁡\alpha}\cdot sec\;{⁡\alpha}\\[0.2cm]
  5. sen  θ(csc  θsen  θ)cos2  θsen\;{⁡\theta}\left(csc\;{⁡\theta}-sen\;{\theta}\right)\equiv cos^2\;{⁡\theta}\\[0.2cm]
  1. sen2  θ(1+cot2  θ)1sen^2\;{⁡\theta}\left(1+cot^2\;{\theta}\right)\equiv 1\\[0.2cm]
  2. sen  βcsc  β+cos  βsec  β1\cfrac{sen\;{⁡\beta}}{csc\;{⁡\beta}}+\cfrac{cos\;{⁡\beta}}{sec\;{⁡\beta}}\equiv 1\\[0.2cm]
  3. sec  βtan  β+cot  βsen  β\cfrac{sec\;{⁡\beta}}{tan\;{⁡\beta}+cot\;{⁡\beta}}\equiv sen\;{⁡\beta}\\[0.2cm]
  4. tan  β+cot  βtan  βcot  βsec2  βtan  β1\cfrac{tan\;{⁡\beta}+cot\;{⁡\beta}}{tan\;{⁡\beta}-cot\;{⁡\beta}}\equiv\cfrac{sec^2\;{⁡\beta}}{tan\;{⁡\beta}-1}
  5. 12sen2  θ1tan2  θ1+tan2  θ1-2sen^2\;{⁡\theta}\equiv \cfrac{1-tan^2\;{⁡\theta}}{1+tan^2\;{⁡\theta}}\\[0.2cm]